
Shashwat Agrawal
+91 9420153231 | shashwatagrawal473@gmail.com | Linkedin | Github

Experience

Open Source Contribution
Pandas

• Optimized performance by using regular expression in format is iso function. [PR]
• Resolved a bug related to validate percentile function. [PR]
• Updated documentation in alignment with the deprecation of infer datetime format following PDEP4
standards. [PR]

Collaborative Project
Text Content Summarizer Python, Flask

• Led the development of a flexible Content Summarization API, utilizing Flask, the sumy library, and mediawikiapi
to enable URL, text, and keyword-based summarization with the Latent Semantic Analysis(LSA).

• Leveraged mediawikiapi to retrieve Wikipedia content based on user-provided keywords.
• Reduced content summarization time by 40% through the utilization of the LSA and efficient API design.

Projects

tec.h | C
• Developed TEC (Test Engine for C), a lightweight, header-only unit testing library designed for seamless
integration with C projects.

• Provides an intuitive interface for writing and executing tests with minimal setup, enhancing developer
productivity.

• Ongoing improvements to expand functionality and optimize performance.

Byte Machine | Rust
• Designed and implemented an 8-bit virtual machine with a custom instruction set, complete with CPU emulation
and memory management system.

• Engineered a custom assembler that translates assembly code to bytecode, featuring support for labels, variables,
and basic control flow.

• Implemented key components such as a stack, registers, and memory management, mimicking real-world processor
functionality.

• Optimized bytecode execution for performance and extensibility, allowing future enhancements and additional
instructions.

DNS Server | Python
• Engineered a minimalist DNS server using only the Python standard library, ensuring full compliance with RFC
1035 specifications.

• Deeply analyzed networking protocols and DNS mechanics, meticulously implementing request parsing and
response handling.

• Achieved an average query response time of 100ms under typical load, optimizing efficiency through caching and
streamlined request processing.

HTTP Server | Rust, Tokio, Multi-threading
• Developed a high-performance multi-threaded and asynchronous HTTP server leveraging Tokio for
concurrency.

• Achieved a 100% success rate handling 100,000 requests at 50 concurrent requests/sec.
• Optimized response times ranging from 400µs to 32.8ms, with an average of 5.9ms and peak throughput of
8,423 requests/sec.

Technical Skills

Languages: C, Rust, Python, JavaScript, SQL (Postgres)
Frameworks: Flask, Django, Node.js
Developer Tools: Git, Docker, Podman, NeoVim, Arch Linux
Libraries: Pandas, Matplotlib, Numpy, Tokio, Axum

mailto:shashwatagrawal473@gmail.com
https://linkedin.com/in/theshashwatagrawal
https://github.com/ShashwatAgrawal20
https://github.com/pandas-dev/pandas/pull/50468
https://github.com/pandas-dev/pandas/pull/51475
https://github.com/pandas-dev/pandas/pull/50334
https://github.com/ShashwatAgrawal20/summarizeback
https://github.com/ShashwatAgrawal20/tec.h
https://github.com/ShashwatAgrawal20/byte_machine
https://github.com/ShashwatAgrawal20/python-dns-server
https://github.com/ShashwatAgrawal20/rust-http-server

	Experience
	Projects
	Technical Skills

